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Abstract

As a paradigm for the effective thermal conductivity of a densely packed dispersion of conducting filler particles in

an insulating matrix, the effective conductance of a cubic array of quasi-bicones is determined analytically and its

numerical properties investigated. Based upon the insights gained, the effective conductivities of simple cubic arrays

of more general particles are predicted by three different approximate techniques, and the results compared with those

known for simple cubic arrays of spheres.
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1. Introduction

In modern electronics, there is considerable interest

in conveniently applied pastes which can be deposited

upon electronic assemblies to increase locally either (i)

the effective permittivity (dielectric constant) or (ii) the

thermal conductivity. Such pastes typically consist of

an electrically insulating organic matrix of low permit-

tivity (em/e0 [ 4) and/or low thermal conductivity

(jm [ 1 WK�1m�1) within which have been suspended

dispersant-coated electrically insulating filler particles of

much higher permittivity (ef/e0 J 100) and/or (jf J 20

WK�1 m�1). For both permittivity and thermal conduc-

tivity there is a large literature, both experimental and

theoretical, which agrees on the following:
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(i) Densely packing the packing low-constitutive-

parameter matrices with high-constitutive-para-

meter fillers does not yield mixtures whose effective

constitutive parameters closely approach those of

the fillers. Rather it yields mixtures whose para-

meters typically are only 10-fold those of their

matrices.

(ii) Particulate fillers which approximate flat plates of

mixed size yield parameter increases which can

be several-fold better than those of filler parti-

cles which approximate spheres of uniform size

(e.g. [1]).

Extensive details can be found in a variety of pertinent

review articles [2–7]. However, a first-order understand-

ing of the phenomenon can be simply acquired from an

elementary model for permittivity (a demonstration for

thermal conductivity is substantially analogous and will

be treated in the following sections).
ed.
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Nomenclature

Latin symbols

a in Fig. 1D, the radius of a small perfectly-

conducting hemisphere

A a constant defined in Eq. (5)

AðqÞ a function defined in Eq. (42)

kAm angular eigenfunctions defined by Eqs. (11)

and (19)

b radius of a sphere in which an analytically

tractable model will be solved. b ¼ s
ffiffiffi
2

p

B a constant defined in Eq. (5)

C a capacitance, sometimes subscripted

d the thickness of a surface layer of a filler

particle and within which the Kapitza resist-

ance is localized

f ðzsÞ in Section 4, the normalized radius q of a fil-

ler particle

F fðzsÞ in a particle of filler, the total downward

heat flux across a z-plane

2F1(. . .) the ordinary hypergeometric function

kFm a system of constants

F at a surface, the inward directed flux density

kGm a system of constants

G a thermal conductance

kHm a system of constants

Ik a system of constants defined by Eq. (24a)

K, L constants defined in Eq. (46)

Pm a Legendre function of the first kind

r for a cylindrical or spherical coordinate sys-

tem, the radial coordinate

R the lumped resistance of a thin spatial

element

kRm a radial eigenfunction defined by Eqs. (11),

(15), (18)

s radius of sphere of filler material

T temperature

T0 filler temperature at (h = 0; r = b)

Wkk a system of constants defined by Eq. (24b)

z for a cylindrical coordinate system, the axial

coordinate

Greek symbols

b b = jf/jm � 1

c a positive exponent

d d = d/s

e permittivity

e0 permittivity of free space

f the dimensionless axial coordinate z/s

fmin a dimensionless constant given by

ðd=sÞðjm=jiÞ þ ðjm=jfÞ 1
1þX

gk a system of constants defined by Eq. (17
0
)

h polar angle of a spherical geometry

h0 polar angle of the cone in Fig. 1D

j thermal conductivity

K ln(b/a)

n an exponent such that 0 < n 5 1

q the dimensionless radial coordinate r/s

t for a heterogeneous two phase mixture, the

volume fraction of filler

/ azimuthal angle of a cylindrical or spherical

coordinate geometry (normally taken as

possessing a right-handed screw sense with

respect to the z-axis)

U functions defined by Eqs. (7), (8), (20)

v cosh
x a constant defined in Eq. (42)

X the fan out factor of current entering a filler

particle near its apex

Hebrew symbol

mðvÞ a second solution of Legendre�s equation

and equal to Pm(�v)

Subscripts

eff indicates and effective quantity (usually

refers to a two component heterogeneous

mixture)

f filler material

i interfacial material

m matrix material

norm indicates a normalized quantity

l for real eigendegrees, a real variable in the

interval (�1,1) defined as m ¼ � 1
2
þ 1

2
l

m complex degree of a Legendre function:

m = r + is frequently used as shorthand for

mk, the kth eigendegree

r real part of the complex degree of a Legen-

dre function

s imaginary part of the complex degree of a

Legendre function

Superscript

* indicates that the variable is constrained to a

specific surface
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Consider a cubical volume, s [m] on a side, containing a

heterogeneous mixture of two immiscible components, ma-

trix and filler; and suppose that the volume fraction of filler
is denoted t. Let these two components then be separated

into layers of thickness ts for the filler and (1� t)s for

thematrix. Because capacitances in series sum harmonically
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1

Ceff

¼ 1

Cf

þ 1

Cm

; ð1aÞ

or, using the classic approximation for parallel-plate

capacitors

1

eeff
¼ t

ef
þ 1� t

em
; ð1bÞ

and

eeff
ef

¼ ½em=ef �
1� tþ t½em=ef �

: ð1cÞ

Eq. (1c) reveals what experimentalists have qualitatively

found to be the case for systems of this type: that mixing

constituents of [em/ef]� 1 to make a paste for which the

effective constitutive parameter closely approaches ef is a
formidable task since it requires a volume fraction t so

close to 1 as to be unattainable by simple random pack-

ing of granular particles!

The physics, unlike the detailed mathematics, of this

behavior of this are as straightforward as the simple the-

ory put forth above. The filler, being low impedance,

captures the flux. But the filler is discontinuous so that,

from time to time, this flux must ‘‘portage’’ across a

layer of the relatively more insulating matrix material.

This is beautifully illustrated in Fletcher�s review of a

decade ago [8, Fig. 2; cf. 9; p. 630] 1 which shows two

rough surfaces in apposition and sketches the concentra-

tion of flux lines at points of contact. Ideally, the sur-

faces of two apposed filler particles make contact only

at a small number of points, adjacent to which the flux

is forced out into the intervening matrix. Thus the

matrix dominates.

For heat conduction, the situation can be further

complicated by the fact that both filler and matrix are

often required to be electrically insulating so that heat

conduction is by way of phonon propagation. Suitable

dielectric crystals can have surprisingly high thermal

conductivity, which however is disrupted at filler–matrix

interfaces leading to the phenomenon of thermal bound-

ary resistance [9–11].

The difficult task of understanding a particular con-

stitutive parameter for a composite has been compli-

cated by the history of this field. Recognizing the

analytic difficulties of solving a microscale problem,

workers have sensibly focussed on macroscale models

which do not directly exploit the equation of heat con-

duction to evaluate the thermal behavior near a point

of tangency between two filler particles. This issue will

be directly confronted in the Sections 2 and 3 by evalu-

ating exactly the thermal conductance of a modified

cone-plane geometry. Section 4 will then be devoted to
1 Where appropriate, pointers will be given to page (p.),

section (s.), chapter (ch.), equation (Eq.), figure (Fig.), table

(Tab.), or experiment (expt.) of the pertinent reference.
developing three easy approximate techniques for treat-

ing filler particles of more complicated non-conical

shapes; and the approximation results for a cone will

then be compared with the exact result.
2. Development of the model

In this, as in many exercises in applied mathematics,

success depends heavily upon setting the problem in such

a way that it becomes analytically tractable without los-

ing its relevance to the presumed physical situation. A

composite of heterogeneous filler particles in a matrix

will not in general possess the type of periodic structure

which would simplify a mathematical model. Neither,

however, will the structure be totally random; and an

attractive idealization is a simple cubic lattice formed

by files of identical spheres and their surrounding

matrix, of which a yz-cross-section is shown in Fig. 1A.

Each vertical z-directed file constitutes a conductance

in parallel with each other vertical file and (since it is

indistinguishable) can be considered as an independent

entity; this has been indicated in Fig. 1A by patterning

the spheres of one file. Similarly, if there are U spheres

in one vertical file, then the file can be decomposed into

2Umathematically identical half-cells, which (by symme-

try) will be idealized as bounded at top and bottom by

isothermal (alternatively, equiflux) planes (black) and

on the sides by insulating planes (dashed black), and

it will be symmetric about its central axis; one such

half-cell has been indicated in Fig. 1A by boxing it.

To proceed to the next level of simplification it is nec-

essary to assume that jf [WK�1m�1], the thermal con-

ductivity of the filler particles, is much greater than

jm, the thermal conductivity of the matrix; that is,

jf/jm � 1. Physically this means that the flux of heat

along a vertical file of particles will be largely confined

to the filler and spread significantly into the matrix only

near the upper and lower poles of the particles. This

means that the thermal conductance G between the

polar tangent plane and the cut surface of the hemi-

sphere will be left largely unaffected by:

(i) Mounding highly conductive filler material atop the

cut surface, subject to the constraints: (a) the mound

be convex; (b) that its volume be rather less than

that of the hemisphere; and (c) that its surface be

approximately equipotential.

(ii) Adding or subtracting insulating matrix if the

regions affected are far from the pole at which

the thermal flux through the matrix will be

concentrated.

These assumptions enable model construction to pro-

ceed along two different paths.



Fig. 1. Derivation of the sphere-cone geometry of Section 3. (A) A simple cubic array of spherical filler particles is shown in yz-cross-

section; its extent is infinite in the x- and y-directions and finite but many spheres deep in the z-direction. The stippling indicates a solid

matrix within which the spheres are embedded. A typical vertical file of filler particles is indicated by brick fill to denote the presumed

crystalline phonon-propagating nature of the particle. The box encloses a single half-cell with isothermal (alternatively, equiflux) top

and bottom surfaces (thick black solid lines) and insulating sides (thick black dashed lines). (B) Ontogeny (starting from the half-cell of

A) of a half-cell geometry in which Laplace�s equation admits of an exact eigenfunction solution. Solid thick black lines denote

isothermal (alternatively, equiflux) surfaces; dashed thick black lines denote insulating surfaces. Shown here is the transformation to a

hemispherical half-cell with putatively non-perturbing additions of filler and matrix. (C) Transformation of (B) to a half-cell containing

a sharp point which would be characteristic of an array of bicones rather than spheres; all interfaces are now simple coordinate

boundaries. (D) Putatively non-perturbing transformation of (C) to an analytically tractable geometry; the minute isothermal

hemisphere at the origin obviates singularities of the radial eigenfunctions. (E) yz-section through the hemispherical half-cell of (D)

showing it divided into two spherical sectors by a cone of angle h0. Only one quadrant is shown, and there is /-symmetry about the

polar z-axis; the spherical (h,/, r) coordinate system is illustrated relative to a point Q. The closed spherical sector 0 5 h 5 h0 is

symmetrical about its polar axis (zero flux), has constant flux density over its r = b surface, and is at temperature zero over its r = a

surface. The open spherical sector h0 5 h 5 p/2 has temperature zero over its h = p/2 surface, zero flux over its r = b surface, and zero

temperature over its r = a surface. Boundary conditions on the cone h = h0 are continuity of temperature and flux.
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The first path, shown in Fig. 1B, begins by assuming

that the spherical filler particles are s [m] in radius and

that the 2s · 2s · s rectangular–parallelepipedal half-cell

has been expanded into an inverted bowl of radius

b ¼ s
ffiffiffi
2

p
. In this transformation, high conductivity filler

has been added to the top of the hemispherical filler par-

ticle increasing its volume by not quite one-third; how-

ever, since the thermal resistance will be concentrated

near the particle�s point of tangency with its lower neigh-

bor, this addition should not materially change the con-

ductance of the half-cell. At the same time, the volume

of insulating matrix has been increased by not quite

two-thirds, but only far from the point of tangency

where is should have no significant effect. However,

the problem still is not in an analytically tractable form:

that is achieved by approximating the initial filler parti-

cle by a cone, as shown in Fig. 1C. Here, all surfaces are

simply represented in a (h,/, r) spherical coordinate sys-
tem, and Laplace�s equation for steady-state heat distri-

bution is separable. Nevertheless, to enable an exact

solution in the form of an eigenfunction expansion it is

still necessary to add, as in Fig. 1D, a small isothermal
Fig. 2. Transformation of the half-cell of Fig. 1A from a rectangular

solution. (A) Solid thick black lines denote isothermal (alternatively

surfaces. Shown here is the transformation to a half-cell with a hemi

which the filler particle has a cusp. (C) The cylindrical half-cell of Fig. 2

cylindrical plate which are used in the approximate theories of S

(jf/jm�1) = 999 and 0 < n 5 1. The solid line (––) is for the conduct

(0.00,0.99) and at the upper end of this range is beginning to manife

hypergeometric function; the points denoted by circles (�) are for

respectively. The dashed line (- - - - -) is for the quasi-distributed netwo
(i.e., perfectly-conducting) hemisphere of radius a� b

around the apex of the cone. This is a mathematical con-

venience which suppresses a singularity at the origin

manifested by the radial eigenfunctions; but it finesses

in passing the physical issue of the thermal boundary

resistance of a point contact.

The second path, shown in Fig. 2A, begins by shrink-

ing the parallelepiped containing the filler hemisphere to

a right circular cylinder of radius s and height s. The fil-

ler volume within the half-cell is unchanged; but the

matrix volume is decreased, all matrix loss occurring

in low flux regions far from the point of tangency at

the hemisphere�s pole. Laplace�s equation is not usefully

separable in this (r,h,z) cylindrical system since the sur-

face separating filler and matrix does not lie along a sur-

face on which one of the coordinates is constant. Since,

however, the interface coordinates of the hemisphere can

be represented by an equation of the form

r ¼ sf ðz=sÞ; ð2Þ

where f(z/s) increases monotonically from 0 to 1 as z

tends from 0 to 1, it follows that a suitable approximate
parallelepiped to a truncated cylinder suitable for approximate

, equiflux) surfaces; dashed thick black lines denote insulating

spherical filler particle. (B) Topologically equivalent half-cell in

A and B, here modified to show thin cylindrical shells and a thin

ection 4. (D) Approximate solutions for Gnormðn; bÞ for b =

ances-in-series approximation of Eq. (31), spans the n-interval
st incipient breakdown of the calculation method used for the

the special solutions of Eqs. (32) and (33) for n = 1/2 and 1,

rk model of Eq. (39).
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solution method-should work for a wide range of inter-

face shapes which satisfy the monotonicity and range

constraints placed upon f(z/s): for example the cusped

interface of Fig. 2B.
3. Exact solution for the model of Fig. 1D

3.1. Formal eigenfunction solution

The idealization of Fig. 1D is elaborated in Fig. 1E

which illustrates a yz-cut through the geometry and

shows the spatial relationships among the several varia-

bles. Strictly speaking, the angle h0 should be p/4 as in

the half cell of Fig. 1A; but no additional labor ensues

solving for an arbitrary 0 < h0 < p/2. The variable of

interest is the thermal conductance G [W/K] between

the outer surface of the closed spherical sector of filler

and the isothermal h = p/2 plane. However, the underly-

ing problem in the physics of composites concerns the

failure of the composite�s effective conductivity to ap-

proach that of the filler; hence a more informative quan-

tity to study would be the behavior of a G normalized to

an appropriate reference conductance, such as that ex-

pected of a filler half-cell 2b in diameter and s high, that

is G=ðp
ffiffiffi
2

p
bjfÞ. Nevertheless the conductance will be

normalized to a half cell of matrix because that is the

tradition in the literature (e.g. [12–15])

Gnorm ¼ G=ðp
ffiffiffi
2

p
bjmÞ: ð3Þ

Let F [Wm�2] be the normal component of the in-

ward thermal flux density, assumed constant over the

r = b surface of the filler particle. Then the total inward

thermal flux through the hemispherical half-cell of Fig.

1E will be F½2pb2ð1� cos h0Þ�; and an acceptable nor-

malized conductance is

Gnorm ¼ G=ðpsjmÞ ¼
ffiffiffi
2

p
bð1� cos h0Þ

F

T 0jm

; ð4Þ

where T0 [K] is the polar temperature (i.e., Tf(0,

/,b) = Tf(0,b)) of the filler particle; this temperature is

taken relative to a zero reference over the surface r = a

and over the plane h = p/2. This choice of reference tem-

perature may seem a bit unusual since conductances are

more commonly computed as the quotient of total ther-

mal flux divided by the temperature of an isothermal

surface. However, jf/jm � 1 for the case of interest;

and in this limit, Tf(h,b) is very close to constant, as will

be shown numerically later in this paper. Thus, physi-

cally, the isothermal and equiflux boundary conditions

are virtually indistinguishable; whereas the latter choice

greatly simplifies the problem mathematically.

The conductance problem has now reduced to find-

ing T0, which necessitates finding solving the /-inde-
pendent Laplace equation in both the closed spherical

sector of filler and the open spherical sector of matrix
and then matching solutions at their interface. This is

straightforward classical applied mathematics, but only

if one correctly makes a number of decisions which were

obvious to the author only a posteriori.

Suppose Laplace�s equation in the filler particle is sat-

isfied by

T fðh; rÞ ¼ Af=r þ Bf þ
Fb2

ajf

� �
Ufðh; rÞ; ð5Þ

where Af and Bf are constants to be determined and

r2T f ¼ 0; ð6aÞ

jf ½oT f=or� ¼ F; r ¼ b; ð6bÞ

T f ¼ 0; r ¼ a; ð6cÞ

T f bounded h ¼ 0: ð6dÞ

r2Uf ¼ 0; ð7Þ

oUf=or ¼ 0; r ¼ b; ð8aÞ

Uf ¼ 0; r ¼ a; ð8bÞ

It then follows from Eqs. (5) and (6) that

Af ¼ �a
Fb2

ajf

� �
; ð9aÞ

Bf ¼
Fb2

ajf

� �
; ð9bÞ

T f ¼
Fb2

ajf

� �
f1� a=r þ Ufg: ð10Þ

With the substitution of v for cosh, the Laplace equation
for Uf can be separated into two ordinary differential

equations, one for the radial eigenfunctions RmðrÞ and

one for the angular eigenfunctions AmðvÞ

d

dr
r2
dRm

dr

� �
� mðmþ 1ÞRm ¼ 0; ð11aÞ

d

dv
ð1� v2ÞdAm

dv

� �
þ mðmþ 1ÞAm ¼ 0; ð11bÞ

where, by a well-known theorem of Sturm–Liouville

theory (e.g., [16, s. 25], the eigenvalues m (m + 1) must

be purely real. Moreover, each of the Rm must satisfy

the radial boundary conditions on Uf; and each of the

Am must be well behaved at h = 0.

Eq. (11a) for the radial eigenfunctions admits of a

solution of the form

RmðrÞ ¼ Cmrm þ Dmr�ðmþ1Þ; ð12Þ

Cm and Dm being constants. By Eqs. (8), these eigenfunc-

tions will be identically zero unless
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b
a

� �ð2mþ1Þ

¼ � mþ 1

m
: ð13Þ

To discover the allowed values of m, let m = r + is and ap-

ply the condition that the eigenvalues must be real. It

then follows that either (i) the eigendegree is purely real

or (ii) r = �1/2.

If the eigendegree is purely real, then r must lie in the

interval (�1,0) because the left-hand side of Eq. (13) is

non-negative. With the substitutions K ¼ lnðbaÞ and

r = �1/2 + 1/2l it follows that l lies in the interval

(�1,1) and

K ¼ 1

l
ln
1þ l
1� l

: ð14Þ

The following properties are then readily deduced from

Eq. (14): (a) if l is a root, then so is �l; (b) K(l) is sym-

metrical about l = 0 and has a minimum of 2 at l = 0; (c)

because b/a � 1,K > 2 and the two roots +l0 and �l0
give rise to eigendegrees m = �1/2±1/2l0 and a zeroeth

degree eigenfunction of the form

0Rm ¼
r
a

� ��1=2þ1=2l0
� r

a

� ��1=2�1=2l0
; k ¼ 0: ð15Þ

If the eigendegree is �1/2 + is, Eq. (13) implies

2s ¼ tanKs: ð16Þ

Eq. (16) generates an infinite sequence of eigendegrees

with the easily verified properties: (a) the solution for

s = 0 is trivial because Eqs. (8b) and (12) render its ra-

dial eigenfunction identically zero; (b) if s is a solution,

then so is �s; (c) for positive integers k,

sk �
p
2K

ð2k þ 1Þ; ð17Þ

(d) a suitable radial eigenfunction is

kRm ¼ ðr=aÞ�
1
2 sin sk ln

r
a

� �
; k ¼ 1; 2; 3; . . . : ð18Þ

Eq. (11b) for the angular eigenfunctions is of course

Legendre�s equation of degree m and order 0. However,

rather than constructing the angular eigenfunctions

kAmðvÞ from the usual Legendre functions of the first

(Pm) and second (Qm) kinds, it is markedly more conven-

ient to note that Pm(v) and Pm(�v) are solutions [17, s.

3.2], linearly independent for non-integral m [17, Eq.

3.4(14)]. Hence, kAmðvÞ can legitimately have the form

kAmðvÞ ¼ kGmP mðvÞ þ kH m mðvÞ; ð19Þ
where mðvÞ ¼ P mð�vÞ, kGm and kHm are constants, and

m = mk. However, as h ! 0 (the polar axis of the filler

particle), cosh ! 1 and mðvÞ is unbounded; hence

kHm = 0 and kAmðvÞ contains only Pm(v).
Therefore

Ufðh; rÞ ¼
X1
k¼0

kF mkRmðrÞP mðvÞ; ð20Þ

where the kFm are constants and the subscript m is an

abbreviation for mk.
The solution for the temperature in the matrix is sim-

ilar except that: (a) the radial boundary conditions cause

Am = Bm = 0 while leaving the mk unchanged; and (b) the

angular boundary condition on the plane h = p/2 pro-

duces angular eigenfunctions of the form P m � m. Thus

Tm ¼ Fb2

ajf

� �
Umðh; rÞ

¼ Fb2

ajf

� �X8

k¼0

kM mkRmðrÞ½P mðvÞ � mðvÞ�; ð21Þ

the kMm being constants.

To complete the solution for Tf requires that the two

usual thermal boundary conditions [18, cf. s. 1.9] of (i)

continuity of temperature and (ii) continuity of thermal

flux be applied over the cone h = h0:

T fðv0; rÞ ¼ Tmðv0; rÞ; v0 ¼ cos h0; ð22aÞ

jf

oT f

ov
¼ jm

oTm

ov
; v ¼ v0: ð22bÞ

Because the kRm(r) constitute a complete orthogonal set

on (a,b) [16, s. 24], Eqs. (22) can teased apart to yield

two algebraic equations for each value of k = 0,1,2, . . .

Ik=Wkk ¼ kF m½�P m� þ kM m½P m � m�; v ¼ v0; ð23aÞ

0 ¼ ½jf=jm�kF m½P 0
m� þ kM m½�P 0

m � 0
m�; v ¼ v0; ð23bÞ

where the notation 0 denotes o/ov and where

Ik ¼
Z b

a
½1� a=r�kRmðrÞdr; ð24aÞ

Wkk ¼
Z b

a
kRmðrÞ2 dr: ð24bÞ

It then follows from Eqs. (4), (5), (10), (20) and (23) that

the normalized conductance of the half-cell is given by

Gnorm

¼
ffiffiffi
2

p
½1� cosh0�

1� a
b
þ
X1

k¼0
kRmðbÞ

Ik

Wkk

Pm0m � 0
m

½jf=jm�P 0
m½P m � m� � P m½P 0

m � 0
m�

� jf

jm

a
b
; v¼ v0: ð25Þ
3.2. Computational details

The values of sk for the complex eigendegrees can be

found by expressing Eq. (17) in the form

sk ¼
p
2K

ð2k þ 1Þ � gk ; k ¼ 1; 2; 3; . . . : ð170Þ

where it turns out that 0� gk � 1. This substitution of

Eq. (17
0
) into Eq. (16) then yields

gk ¼
1

K
arctan

1
p ð2k þ 1Þ � 2g

� �
: ð26Þ
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This equation is readily solved by commencing with the

approximate solution gk � 1/[p(2k + 1)], plugging it into

the right hand side, and iterating to convergence. For

example, with b/a = 1000, g1 = 0.103107 (0.106103,

first approximation), g2 = 0.063080 (0.063661), g3 =
0.045268 (0.045472). In the calculations reported here,

256 terms of the eigendegree series were usually

summed; at this level of approximation, the kFm and

the kMm were less than 10�14 and the temperatures

on the two sides of the cone were indistinguishable in

plots.

Because the integrands of Eqs. (24a) and (24b) are

algebraic and simple, Ik and Wkk are readily expressed

and computed.

The functions Legendre functions Pm(v) and mðvÞ
were expressed by 2F1 hypergeometric functions as fol-

lows [17, cf. s. 3.2]:

P mðvÞ ¼ 2F 1ð�m; 1þ m; 1; 1=2� 1=2vÞ; 05 v 5 1;

ð27aÞ

mðvÞ ¼ 2F1ð�m; 1þ m; 1; 1=2þ 1=2vÞ; 05 v 5 v0 < 1:

ð27bÞ

These hypergeometric functions are obviously real for

real m; and turn out also to be real for m = �1/2 + isk
[17, Eq. 3.14(4)]. If the value of the argument be de-

noted by f and if h0 J 1/4p, the hypergeometric func-

tion is readily computed from its Maclaurin series. In

particular, for n2 � s2k , the ratio of the (n + 1)st term

to the nth term can be shown to go asymptotically

as f; that is, the convergence of the hypergeometric

series is ultimately driven by its argument, much as

with a geometric series. For derivatives of the angular

functions, their series can be differentiated term-by-

term and the convergence shown to be qualitatively

similar.
3.3. Numerical results and commentary

The standard case for computation was taken to be:

h0 = 1/4p; b/a = 1000; jf/jm = 1000. In this case, the

r = b surface of the filler particle was isothermal to

within 10% as it was: if cos h0 ¼ 0:01; or if b/a = 10 or

10000; or if jf/jm = 10 or 10000. For jf/jm J 100, a

strong preponderance of the temperature drop took

place within the r-range (a, 10a).

Fig. 3A shows the variation of conductance normal-

ized to the matrix for h0 = 30� (1�)90�, b/a = 1000, and

jf/jm = 1000. The normalized conductance of the half-

cell is for a 45� cone is 1.99, very nearly twice that of

the embedding matrix. That for a 90� cone is 1092 ; that

it is not precisely 1000 may be a result of idealizations

made to half-cell geometry to enable an ‘‘exact’’ solution

of the problem. Gnorm does not exceed 10% of that ex-
pected from filler until h0 > 89�; this illustrates the enor-
mous influence that even a minute amount of insulating

matrix can have on the half-cell conductance of a point

contact. This result also suggests that the obvious strat-

egy of stacking filler flakes (wafers) rather than spheres

or cones may not yield the conductance boost envi-

sioned because perfect packing can not be enforced

and even tiny wedges of matrix will greatly lower the

half-cell conductance.

Fig. 3B shows the variation of conductance normal-

ized to the matrix for log10ðb=aÞ ¼ 1:00ð0:10Þ4:00. This
range was selected because, for thermal greases, pastes,

and epoxies, filler particles will commonly be less than

50 lm in extent while their nano-asperities which actu-

ally make contact (a) presumably are not less than one

crystallographic unit cell in extent (�0.5 nm) and (b)

may behave non-classically when less than �5 nm in

extent [10]. Gnorm is relatively insensitive to variations

of b/a J 1000, presumably because heat conduction

has largely been shunted to the matrix near filler-parti-

cle-points this small.

Fig. 3C shows the variation of the half cell conduct-

ance normalized to the matrix for log10ðjf=jmÞ ¼
1:00ð0:10Þ4:00; this emphasizes how little highly conduc-

tive filler increases the thermal conductivity of the com-

posite. This range was selected because the matrix is

unlikely to be less thermally conductive than low-molec-

ular-weight non-polar amorphous organic solids (�0.1

WK�1m�1); and neither is the filler likely to be more

conductive than diamond (�1000 WK�1m�1).
4. Three approximate solutions

4.1. Introduction

The procedure followed in Section 3 is in spirit com-

plementary to the ‘‘applied mathematics school’’ of two-

phase mixture analysis (e.g., [12–15]) which, for some

material property of the composite, seeks to find ana-

lytic developments which are rigorous, simply computa-

ble, and productive of testable numerical predictions.

There is also a ‘‘pure mathematics school’’ which treats

the mixture problem as one in homogenization of differ-

ential operators (e.g., [19]) and then proves results of a

general nature on the behaviors and bounds of solu-

tions, but normally does not develop experimentally

testable numerical predictions. The literature of these

two schools shows very little overlap.

There is, however, a third possibility: that of using

the exact results of Section 3 to guide the development

of simplistic (but qualitatively informative) models,

which are based upon physical insights into the problem

and require only introductory calculus for their elabora-

tion. This is the goal of Section 4.



Fig. 3. Numerical results from the sphere–cone geometry of Section 3. (A) Half-cell thermal conductance normalized to matrix, as

defined by Eq. (4), versus polar angle h0. Parameter values: b/a = 1000; jf/jm = 1000. Observe the enormous reduction in conductance

which even a sliver of poorly conducting material can produce. (B) Normalized half cell thermal conductance, as defined by Eq. (4),

versus the ratio of bounding radii b/a. Parameter values: h0 = 45�; jf/jm = 1000. Observe that, as b/a becomes large, the normalized

conductance seems to stabilize near 2, as if the half-cell was behaving like a circular cylinder of diameter 2b, height s, and thermal

conductivity 2jm. (C) Normalized half cell thermal conductance, as defined by Eq. (4), versus the ratio jf/jm of the thermal

conductivities of a filler particle and its suspending matrix. Parameter values: h0 = 45�; b/a = 1000. Observe that, over the entire range

of conductivity ratios employed, the effective conductance of the composite never reaches ten-fold that of the pure matrix.

W.F. Pickard / International Journal of Heat and Mass Transfer 47 (2004) 5271–5283 5279
4.2. A lumped-network conductances-in-series method

with numerical results

This model, illustrated in Fig. 2C, contains a thin

cylindrical shell of width dr*, where the * indicates that

the variable lies upon a specific surface in the space. The

lower portion of this shell, below the dashed (- - - - -) line

which denotes the interface r*/s = q = f(z*/s) = f(f), is

denoted by a sparse and heavy dashed line (–––––)

and is taken to have a top-to-bottom conductance

gmðr�Þdr� ¼
jmð2pr�dr�Þ

z�
; ð28aÞ

it is assumed that f(1) = 1. The upper portion of this cell

is denoted by a heavy dot-dash line (- Æ - Æ - Æ - Æ ) and is

taken to have a top-to-bottom conductance

gfðr�Þdr� ¼
jfð2pr�dr�Þ

s� z�
: ð28bÞ
Since conductances in series add harmonically, the net

top-to-bottom conductance of the shell is

gðr�Þdr ¼ ð2pr�dr�Þ jf

z� jf
jm

� 1
� �

þ s
: ð28cÞ

Utilizing the dimensionless variables q = r*/s, f = z*/s,

b = (jf/jm�1) � 1, and integrating g(r)dr yields [20, Eq.

3.194.5]

Gnorm ¼ 1

psjm

Z s

0

gðr�Þdr� ¼ 2nðbþ 1Þ
Z 1

0

f2n�1df
bfþ 1

¼ ðbþ 1Þ2F 1ð1; 2n; 1þ 2n;�bÞ; ð29Þ

where f(f) has been taken to be fn since this power law is

capable of mimicking a wide variety of monotonic

curves over (0,1) ; for the physically-realistic concave-

upwards cusp-free interface, 0 < n 5 1. Eq. (29) can

not be evaluated directly by the hypergeometric series;



5280 W.F. Pickard / International Journal of Heat and Mass Transfer 47 (2004) 5271–5283
but it can be transformed by a well-known analytic con-

tinuation [17, Eq. 2.1.4(17)] to give

Gnormðn; bÞ ¼
Cð2nþ 1ÞCð2n� 1Þ

Cð2nÞCð2nÞ

� bþ 1

b 2F1ð1; 1� 2n; 2� 2n;�b�1Þ

þ Cð2nþ 1ÞCð�2nþ 1Þ
Cð1ÞCð1Þ

bþ 1

b2n ;

n 6¼ 1=2; n 6¼ 1: ð30Þ

Because b�1 � 1, this reduces with the aid of the reflec-

tion formula to

Gnormðn; bÞ ¼
2n

2n� 1

bþ 1

b
½1þ Oðb�1Þ�

þ 2pn
sin 2pn

bþ 1

b2n ; n 6¼ 1=2; n 6¼ 1; ð31Þ

this approximation is plotted in Fig. 2D and reveals that

this large b approximation fails above n � 0.95. For

n = 1/2, the case of a parabolic contact point and crudely

analogous to a sphere, Eq. (29) can be integrated by ele-

mentary means to yield

Gnormð1=2; bÞ ¼
bþ 1

b
lnðbþ 1Þ; ð32Þ

at jf/jm = 1000, this yields 6.915. For n = 1, the case of

45� cone, elementary integration gives

Gnormð1; bÞ ¼ 2
bþ 1

b
1� lnðbþ 1Þ

b

� �
; ð33Þ

at jf/jm = 1000, this yields 1.988, entirely comparable to

the ‘‘exact’’ values from the previous section. For the

case n! 0, filler fills the entire half-cell, and

Gnormð0; bÞ ¼ bþ 1 ¼ jf=jm; ð34Þ

as would be expected on physical grounds.

4.3. A distributed-network method with numerical results

The geometry of Fig. 2C can also be treated by a

rather different approximation. Suppose that the iso-

thermals within the filler particle are planes parallel to

the z = 0 plane. Clearly then, the temperature drop

between two such neighboring z-planes will be

approximately

dT f ¼ F fðfÞ
dz

s2f ðfÞ2pjf

; ð35aÞ

where Ff(f) is the downward flux of heat, or

dT f

df
¼ F fðfÞ

1

½psjf �f ðfÞ2
: ð35bÞ

Similarly, the change in Ff(f) due to leakage into the

matrix around the perimeter of a plate of thickness dz,

must by Eq. (28a), be
dF f

df
¼ T fðfÞ½psjm�

2

f
f ðfÞdf

df
: ð36Þ

If f(f) is once again taken to be fn, it follows that

f2
d2T f

df2
þ f

dT f

df
½2n� � T f

2n
bþ 1

� �
¼ 0: ð37Þ

The solution of this equation which matches the bound-

ary conditions Tf(1) = T0 and Tf(0) = 0 is found by ele-

mentary means to be

T fðfÞ ¼ T 0f
c; ð38aÞ

c ¼ ð1=2� nÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=2� nÞ2 þ 2n

bþ 1

s
: ð38bÞ

It then follows from Eqs. (35b) and (38a) that

Gnormðn; bÞ ¼ ðbþ 1Þc: ð39Þ

This is plotted as the dashed line in Fig. 2D. For the 45�
cone (n = 1), it matches the prediction of the ‘‘exact’’

solution; and, as n ! 0 (filler particle fills the half-cell

completely), it also agrees with the previous approxima-

tion. For n [ 1/2, the two above approximations clearly

differ markedly. Nevertheless, for n J 1/2, they both

predict the experimentally familiar and disappointingly

small increase in effective conductivity achieved by

tightly packing spheres of highly conductive filler [3,4,

e.g.]. However, for n J 0.55 and jf/jm = 1000, they

both predict an increase in effective conductivity less

than 10-fold in keeping with the experimental data sum-

marized by Bigg [4, Fig. 7].

4.4. A model which includes the interfacial resistance of

the particle�s vertex

A high thermal conductivity of particles of a non-

metallic filler depends upon phonon conduction in an

ordered crystal lattice. Near filler–matrix interfaces such

high conductivity is not expected to be the rule as pho-

nons are scattered (a) by crossing the interface or (b)

by surface asperities or other irregularities of structure

near the interface. To achieve even a qualitative estimate

of these Kapitza-like effects, extensive idealization seems

unavoidable.

Suppose then that, as above, the interface shape is de-

scribed by r = sf(z/s). Further, assume that the phonon-

scattering layer can be modelled as a thin film of effective

thickness d, within which the effective thermal conduc-

tivity is ji, where jf > ji > jm; and let this layer extend

into the filler a distance d in the z-direction. It is then

possible to proceed in crude analogy with Section 4.2.

To this end, assume that:

(i) Within the matrix (cf. Fig. 2C) the field lines are

essentially parallel to the z-axis leading to concen-

tric cylindrical shells of end-to-end-resistance
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Rm ¼ ½z��=½jm2pr�dr��: ð40aÞ

(ii) From the interfacial film there arises a resistance

contribution

Ri ¼ ½d�=½ji2pr�dr��: ð40bÞ

(iii) Within the filler particle the field lines fan out as one

might expect, since the apex of the particle should

approximate a point source as the conductivity of

the matrix becomes very small compared to that

of the filler. In particular, suppose that (upon leav-

ing the interfacial film) the field lines fan out coni-

cally, starting at (r*,z*) in a ring of width dr* and

ending up at (r, s) in a ring of width dr*[r/r*]. It

can then be shown that this conical shell of non-uni-

form thickness has an end-to-end resistance

Rf ¼ ½s� z��=½jf 2pr�dr�ðr=r�Þ�: ð40cÞ

It then follows from the usual substitutions and defini-

tion r=r� ¼ A=q that

Gnorm ¼ 1

psjm

Z s

0

2pr�dr�
1

z�=jmþd=jiþ½s� z��=½jfðr=r�Þ�

¼ 2

Z 1

0

qdq
fþðd=sÞðjm=jiÞþð1� fÞðjm=jfÞðq=AÞ :

ð41Þ

This equation reveals that the bulk of the normalized

conductance arises from the zone where f is very small

and terms depending upon d� s and possibly A=q pre-

dominate. Concerning AðqÞ=q it can reasonably be as-

serted that (because of fan out) it presumably is large

as q ! 0 and that (because r 6 s) it tends to unity as

q ! 1. If one assumes moreover that (to keep the field

lines from crossing) AðqÞ=q is monotone decreasing

over (0,1) and that much of its decrease occurs near

q = 0, then one allowable approximation is

AðqÞ=q¼: 1þ X
1þ Xqx

; ð42Þ

where x is rather less than unity and X� 1. Since

jf � jm and the region near the particle apex domi-

nates, this reduces Eq. (41) to

Gnorm ¼: 2
Z 1

0

qdq

fþ ðd=sÞðjm=jiÞ þ ðjm=jfÞ 1
1þX

: ð43Þ

Finally, assuming once more that q = fn and defining

fmin ¼ ðd=sÞðjm=jiÞ þ ðjm=jfÞ 1
1þX, yields

Gnorm ¼: 2n
Z 1

0

f2n�1 df
fþ fmin

: ð44Þ

As in Section 4.2, this equation can be expressed as a

hypergeometric functions. However, given the degree

of uncertainty in d, ji, and X, detailed examination of

the result seems unwarranted; and this section will con-
clude by considering only the quasi-parabolic case

(n = 1/2) in the limits d = 0 and fmin � 1. This is

Gnorm ¼: lnð1þ fminÞ � lnðfminÞ

¼ ln
1

fmin

� 	
þ fmin þ Oðf2minÞ

¼ ln
jf

jm

� 	
þ lnð1þ XÞ þ OðfminÞ: ð45Þ
4.5. Comparison of the parabolic point contact (n = 1/2)

with the ‘‘exact’’ solution for a simple cubic array of con-

ducting spheres in a less conductive matrix

The solution of Laplace�s equation to predict the

effective conductivity of a simple cubic array of conduct-

ing spheres embedded in a matrix has fascinated applied

mathematicians since the time of Lord Rayleigh (cf.

[13]). A unified, computable, exact solution has yet to

be achieved, although analytic approximations abound.

For example:

(i) Batchelor and O�Brien [12] showed that, as b !1,

the normalized conductivity of a closely-packed

array of identical spheres varied asymptotically as

jeff

jm

� ½L lnðbþ 1Þ � K�; ð46Þ

where L and K are constants which vary with the

particular type of packing. For example, L is p
for a simple cubic array but 4 for a randomly

packed array; theoretical values for K were not

given. However, in their Fig. 6, Batchelor and

O�Brien [Q] fitted Eq. (46) to an extensive set of

experimental data for random packing and found

(i) that the value of 4 was in good agreement with

the data and (ii) that KG 11. The authors did not

state how large b had to be to make the approxi-

mation trustworthy, although McPhedran and

McKenzie [14] promptly came up with an estimate

of 100.

(ii) For the simple cubic case, Sangani and Acrivos [15]

obtained the theoretical result K = 5.91. They also

extended previous analytic treatments for b[ 50.

(iii) For the simple cubic case, Cheng and Torquato [13]

corrected apparent mistakes in previous analytic

treatments for the b [ 50 regime and extended the

method to include simple thermal boundary

resistances.

Fig. 4 shows the theoretical curves from Eq. (3.1) of

Cheng and Torquato [13] for the small-b regime, from

Batchelor and O�Brien [12] for the large-b regime with

L = p and K = 5.91, from Eq. (32) of this paper for the

parabolic point contact (n = 1/2) case of the conduct-

ance-in-series approximation, from Eq. (39) of this

paper for the parabolic point contact (n = 1/2) case of



Fig. 4. Comparison of the predicted composite conductances of

a simple array of spheres in an insulating matrix; the independ-

ent variable is the ratio of filler conductivity to matrix

conductivity. The Cheng–Torquato approximation [13] is

denoted by a sequence of circles (������); the Batch-

elor-O�Brien approximation [12] is denoted by a sequence of

plus signs (þ þ þ þ þ þ); the simplistic conductances in series

model of Eq. (32) is denoted by a line of small dashes (- - - - - - -);

the distributed-network model of Eq. (39) is denoted by a line of

coarse dashes (– –); the fan out model of Eq. (45) is denoted by a

solid line (––); and finally, the square root heuristic (see text) is

denoted by a line of asterisks (� � � � � � �).
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the distributed network approximation, and from Eq.

(45) of this paper the parabolic point contact (n = 1/2)

case of the fan out approximation with X = 2. The obvi-

ous conclusion to be drawn from Fig. 4 is that the sev-

eral models are not in concordance quantitatively even

though they all agree qualitatively that greatly increas-

ing the relative thermal conductivity of the filler

improves the conductivity of the composite only margin-

ally. Secondarily, of the simplistic approaches of Section

4, it appears that the fan out model is in best accord with

the more exact models for cubic arrays.

But finally, as shown by the string of asterisks in Fig.

4, multiplying the distributed network prediction by the

fan out prediction and square rooting gives a prediction

which tolerably well matches the Cheng–Torquato [13]

expansion for values of jf/jm [ 20 and the Batchelor-

O�Brien approximation for values of jf/jm J 20. Given

the non-ideal shapes of filler particles in real physical sit-

uations, this ‘‘square root heuristic’’ probably provides as

much predictive power as can reasonably be expected; and

it is both computationally simple and swift.
5. Discussion

The literature reviewed in Section 1 showed that the

gross oversimplification of Eq. (1c) qualitatively corre-

sponds to experimental reality. The exact and approxi-

mate physical models of the previous two sections also
substantiate the qualitative validity of Eq. (1c). This does

not however demonstrate that it is impossible to con-

struct a two-phase heterogeneous paste such that its

effective thermal conductivity (or permittivity) is closer

to that of the filler than to that of the matrix. Indeed,

there are hints in the literature of how one might proceed.

First, in accordance with the predictions of Fig. 2D,

one could try to approach the n ! 0 regime: one could

use flake-like filler particles. This has in fact been done

(e.g., [1]) and can yield composites with effective conduc-

tivity above 25 Wm�1K�1.

Second, reasoning in part that mixtures with higher

volume fractions of filler will have higher conductivities,

use filler particles whose size distribution is multimodal.

At first glance, this might be predicted to be unhelpful

for flake fillers, successive layers of which should be in

exceptionally close apposition to one another to lower

the resistance near contact points; this is so because mis-

cellaneous grit would presumably keep the major flakes

from packing tightly. However, electron micrographs of

the stacking of quasi-plates reveal that they tend not to

settle like bricks in a wall but like bricks dumped in a

heap [21, Fig. 15.1]. Therefore, an admixture of sizes

might possibly increase the number per unit volume of

high conductance contact points with a resultant in-

crease in the effective conductivity of the mixture (cf.

[8]). Empirically, the latter possibility seems true [1].

Third, this suggests that for, dimensionally com-

pact (i.e., quasi-spherical) filler particles, it might be

advantageous to employ what I shall call iterative

embedding. Let tiny (e.g., 1 lm) particles of high conduc-

tivity jf be densely packed into a matrix of much lower

conductivity jm to obtain a ‘‘first composite’’ of effec-

tive conductivity crudely estimated by Eq. (45) to be

j1=jm¼: lnðjfjmÞ þ lnð1þ XÞ. Into this first composite,

densely suspend rather larger filler particles (e.g., 10

lm) to obtain a ‘‘second composite’’ of approximate

effective conductivity j2/j1 G ln(jf/j1) + ln(1 + X). This
process might even be extended one additional level to

still larger embedded particles (e.g., 100 lm), and j 3/

j2 G ln(jf/j2) + ln(1 + X). For example, if X = 2,

jm = 1, and jf = 1000, then j1 G 8, j2 G 47, j3 G 197.

Fourth, however seductive iterative embedding might

seem, it should be remembered (A) that uniformly and

reproducibly dispersing particles with a sequence of

diameter modes will not be trivial and (B) that, long be-

fore the result of a sequence of embeddings shall have

converged to jf, interfacial effects of unknown severity

will have vitiated the effectiveness of the process.
6. Conclusions

Loading of a matrix of low thermal conductivity jm
with uniformly-sized filler particles of much higher ther-

mal conductivity jf to obtain a mixture of intermediate
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conductivity only slightly less than jf seems destined not

to work. This is so because the filler�s high jf is of deci-
sive importance only in minute contact zones between

particles; and, near the contact zone, the bulk mecha-

nisms which yielded jf may be overwhelmed by Kapitza

interfacial-resistance effects. To some extent, it may be

possible to avoid this physical limitation by iterative

embedding.
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